L

Initializing Studio...

Documentation
Last updated: October 10, 2025

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog

Evaluation

Understand model evaluation metrics and best practices for measuring performance.

Evaluation Metrics

LangTrain provides comprehensive evaluation tools including accuracy, F1-score, BLEU, ROUGE, and custom metrics for different tasks. Choose the right metrics for your specific use case.

Classification Metrics:
- Accuracy - Overall correctness
- Precision - True positive rate
- Recall - Sensitivity
- F1-Score - Harmonic mean of precision and recall
- ROC-AUC - Area under the curve

Text Generation Metrics:
- BLEU - Bilingual evaluation understudy
- ROUGE - Recall-oriented understudy for gisting evaluation
- METEOR - Metric for evaluation of translation with explicit ordering
- BERTScore - Semantic similarity using BERT embeddings
Code Example
from langtrain import Evaluator

# Initialize evaluator
evaluator = Evaluator(task_type='text_classification')

# Built-in metrics
results = evaluator.evaluate(
    model=model,
    test_data=test_dataset,
    metrics=['accuracy', 'f1_score', 'precision', 'recall']
)

print(f"Accuracy: {results['accuracy']:.4f}")
print(f"F1-Score: {results['f1_score']:.4f}")

# For text generation tasks
gen_evaluator = Evaluator(task_type='text_generation')
gen_results = gen_evaluator.evaluate(
    model=model,
    test_data=test_dataset,
    metrics=['bleu', 'rouge', 'bert_score']
)

Custom Metrics

Define custom evaluation metrics tailored to your specific requirements and domain.
Code Example
# Define custom evaluation metric
def custom_domain_accuracy(predictions, labels, domain_weights):
    """Custom metric that weights accuracy by domain importance"""
    correct = 0
    total_weight = 0
    
    for pred, label, weight in zip(predictions, labels, domain_weights):
        if pred == label:
            correct += weight
        total_weight += weight
    
    return correct / total_weight if total_weight > 0 else 0

# Register custom metric
evaluator.register_metric('domain_accuracy', custom_domain_accuracy)

# Use in evaluation
results = evaluator.evaluate(
    model=model,
    test_data=test_dataset,
    metrics=['accuracy', 'domain_accuracy'],
    metric_params={'domain_accuracy': {'domain_weights': weights}}
)

Evaluation Strategies

Implement robust evaluation strategies including cross-validation, holdout testing, and temporal splits.
Code Example
# Cross-validation evaluation
from langtrain.evaluation import CrossValidator

cv = CrossValidator(
    folds=5,
    stratified=True,
    random_state=42
)

cv_results = cv.evaluate(
    model=model,
    data=dataset,
    metrics=['accuracy', 'f1_score']
)

print(f"CV Accuracy: {cv_results['accuracy'].mean():.4f} ± {cv_results['accuracy'].std():.4f}")

# Temporal split for time-series data
from langtrain.evaluation import TemporalSplit

temporal_split = TemporalSplit(
    train_size=0.7,
    val_size=0.15,
    test_size=0.15,
    time_column='timestamp'
)

train, val, test = temporal_split.split(dataset)

# Evaluate on temporal test set
temporal_results = evaluator.evaluate(
    model=model,
    test_data=test,
    metrics=['accuracy', 'f1_score']
)

Model Comparison

Compare multiple models systematically with statistical significance testing.
Code Example
# Compare multiple models
from langtrain.evaluation import ModelComparator

comparator = ModelComparator(
    models=[model1, model2, model3],
    model_names=['BERT', 'RoBERTa', 'DistilBERT']
)

comparison_results = comparator.compare(
    test_data=test_dataset,
    metrics=['accuracy', 'f1_score', 'inference_time'],
    statistical_test='mcnemar'  # McNemar's test for significance
)

# Generate comparison report
comparator.generate_report(
    results=comparison_results,
    output_path='model_comparison_report.html',
    include_plots=True
)

print(comparison_results.summary())

Continuous Evaluation

Set up continuous evaluation pipelines to monitor model performance over time.
Code Example
# Continuous evaluation setup
from langtrain.evaluation import ContinuousEvaluator

continuous_eval = ContinuousEvaluator(
    model=model,
    evaluation_schedule='daily',
    alert_thresholds={
        'accuracy': 0.85,  # Alert if accuracy drops below 85%
        'f1_score': 0.80
    }
)

# Monitor data drift
continuous_eval.enable_drift_detection(
    reference_data=training_data,
    drift_threshold=0.1
)

# Set up alerts
continuous_eval.configure_alerts(
    email=['team@company.com'],
    slack_webhook='https://hooks.slack.com/...'
)

# Start monitoring
continuous_eval.start()

On this page

Evaluation MetricsCustom MetricsEvaluation StrategiesModel ComparisonContinuous Evaluation