L
Initializing Studio...
Complete guide to using LangTrain's Python SDK for model training and deployment.
pip install langtrain-ai
# Or install with optional dependencies
pip install langtrain-ai[gpu] # For GPU support
pip install langtrain-ai[dev] # For development toolsimport langtrain
# Initialize client
client = langtrain.Client(api_key="your-api-key")
# Start a fine-tuning job
job = client.fine_tune.create(
model="llama-2-7b",
dataset="your-dataset-id",
config={
"learning_rate": 2e-5,
"batch_size": 4,
"epochs": 3
}
)
print(f"Fine-tuning job started: {job.id}")# Upload dataset
dataset = client.datasets.upload(
file_path="training_data.jsonl",
name="my-dataset"
)
# Create fine-tuning job with LoRA
job = client.fine_tune.create(
model="mistral-7b",
dataset=dataset.id,
config={
"method": "lora",
"rank": 16,
"alpha": 32,
"learning_rate": 1e-4,
"max_steps": 1000
}
)
# Monitor progress
while job.status == "running":
job = client.fine_tune.get(job.id)
print(f"Progress: {job.progress}%")
time.sleep(30)# Load fine-tuned model
model = client.models.get("your-model-id")
# Single inference
response = model.generate(
prompt="What is the capital of France?",
max_tokens=100,
temperature=0.7
)
print(response.text)
# Streaming inference
for chunk in model.stream(prompt="Tell me a story"):
print(chunk.text, end="", flush=True)from langtrain.exceptions import (
AuthenticationError,
RateLimitError,
ModelNotFoundError
)
try:
job = client.fine_tune.create(...)
except AuthenticationError:
print("Invalid API key")
except RateLimitError as e:
print(f"Rate limited. Retry after {e.retry_after} seconds")
except ModelNotFoundError:
print("Model not found")
except Exception as e:
print(f"Unexpected error: {e}")