L
Initializing Studio...
Parameter-efficient fine-tuning with Low-Rank Adaptation and Quantized LoRA.
# Basic LoRA implementation concept
import torch
import torch.nn as nn
class LoRALinear(nn.Module):
def __init__(self, in_features, out_features, rank=4, alpha=1):
super().__init__()
self.rank = rank
self.alpha = alpha
# Frozen pre-trained weights
self.weight = nn.Parameter(torch.randn(out_features, in_features))
self.weight.requires_grad = False
# LoRA matrices
self.lora_A = nn.Parameter(torch.randn(rank, in_features))
self.lora_B = nn.Parameter(torch.zeros(out_features, rank))
# Initialize A with gaussian, B with zeros
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
# Original forward pass + LoRA adaptation
result = F.linear(x, self.weight)
lora_result = F.linear(F.linear(x, self.lora_A.T), self.lora_B.T)
return result + (self.alpha / self.rank) * lora_result# QLoRA fine-tuning with LangTrain
from langtrain import QLoRATrainer
from langtrain.models import AutoModelForCausalLM
from langtrain.datasets import load_dataset
from transformers import AutoTokenizer
# Load model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
"microsoft/DialoGPT-large",
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
# Configure QLoRA parameters
qlora_config = {
"r": 64, # Rank
"lora_alpha": 16, # Scaling parameter
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"],
"lora_dropout": 0.1,
"bias": "none",
"task_type": "CAUSAL_LM"
}
# Load and prepare dataset
dataset = load_dataset("your_dataset.jsonl")
dataset = dataset.map(lambda x: tokenizer(x["text"], truncation=True, padding=True))
# Initialize trainer
trainer = QLoRATrainer(
model=model,
tokenizer=tokenizer,
dataset=dataset,
qlora_config=qlora_config,
output_dir="./qlora_results",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
save_steps=500,
logging_steps=10,
)
# Start training
trainer.train()# Advanced LoRA configuration
advanced_config = {
# Core LoRA parameters
"r": 32, # Rank - balance between efficiency and capacity
"lora_alpha": 64, # Scaling factor (typically 2*r)
"lora_dropout": 0.05, # Regularization
# Target modules - customize based on model architecture
"target_modules": [
"q_proj", "k_proj", "v_proj", "o_proj", # Attention
"gate_proj", "up_proj", "down_proj" # MLP (for Llama-like models)
],
# Advanced options
"bias": "lora_only", # Train bias in LoRA layers
"modules_to_save": ["embed_tokens", "lm_head"], # Additional modules
"init_lora_weights": True, # Proper initialization
# QLoRA specific
"load_in_4bit": True,
"bnb_4bit_compute_dtype": torch.bfloat16,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_use_double_quant": True,
}
# Training hyperparameters
training_args = {
"output_dir": "./advanced_lora_results",
"num_train_epochs": 5,
"per_device_train_batch_size": 2,
"gradient_accumulation_steps": 8,
"learning_rate": 1e-4,
"weight_decay": 0.01,
"warmup_ratio": 0.03,
"lr_scheduler_type": "cosine",
"save_strategy": "steps",
"save_steps": 250,
"eval_strategy": "steps",
"eval_steps": 250,
"logging_steps": 10,
"fp16": False,
"bf16": True, # Better numerical stability
"dataloader_pin_memory": False, # Memory optimization
"remove_unused_columns": False,
}# Method 1: Merge LoRA adapters into base model
from peft import PeftModel
import torch
# Load base model and adapter
base_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
model = PeftModel.from_pretrained(base_model, "./lora_results")
# Merge adapters
merged_model = model.merge_and_unload()
# Save merged model
merged_model.save_pretrained("./merged_model")
tokenizer.save_pretrained("./merged_model")
# Method 2: Deploy with separate adapters
from langtrain import LoRAInference
# Initialize inference engine
inference = LoRAInference(
base_model="microsoft/DialoGPT-large",
adapter_path="./lora_results",
device="cuda",
torch_dtype=torch.float16
)
# Switch between different adapters dynamically
inference.load_adapter("task_1", "./task1_lora")
inference.load_adapter("task_2", "./task2_lora")
# Generate with specific adapter
response = inference.generate(
"Hello, how are you?",
adapter_name="task_1",
max_length=100,
temperature=0.7
)
# Method 3: Batch inference with multiple adapters
responses = inference.batch_generate([
{"text": "Explain quantum computing", "adapter": "task_1"},
{"text": "Write a poem about AI", "adapter": "task_2"}
])
print(responses)gradient_checkpointing=True for 40-50% memory reduction.bf16 instead of fp16 for numerical stability. Increase batch size with gradient accumulation for better GPU utilization.# Production-optimized training configuration
from langtrain import OptimizedQLoRATrainer
import torch
# Memory-efficient configuration
optimizer_config = {
# Optimizer settings
"optimizer": "adamw_torch_fused", # Faster fused optimizer
"learning_rate": 2e-4,
"weight_decay": 0.01,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"adam_epsilon": 1e-8,
# Memory optimizations
"gradient_checkpointing": True,
"dataloader_pin_memory": False,
"dataloader_num_workers": 4,
"remove_unused_columns": False,
# Performance optimizations
"bf16": True, # Better than fp16 for stability
"tf32": True, # Enable TensorFloat-32 on A100
"ddp_find_unused_parameters": False,
# Batch size optimization
"per_device_train_batch_size": 1,
"gradient_accumulation_steps": 16, # Effective batch size = 16
"max_grad_norm": 1.0,
}
# Initialize optimized trainer
trainer = OptimizedQLoRATrainer(
model=model,
tokenizer=tokenizer,
dataset=dataset,
**optimizer_config
)
# Monitor training metrics
def compute_metrics(eval_pred):
predictions, labels = eval_pred
# Implement your metric computation
perplexity = torch.exp(torch.tensor(loss))
return {"perplexity": perplexity}
trainer.compute_metrics = compute_metrics
# Train with automatic mixed precision
with torch.cuda.amp.autocast():
trainer.train()
# Profile memory usage
print(f"Peak memory: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB")