Security Overview
Comprehensive security guide for LangTrain deployments. Learn about enterprise-grade data protection, access control, audit logging, and compliance requirements for production AI systems.
Key Features
🔒
End-to-End Encryption
AES-256 encryption for data at rest and TLS 1.3 for data in transit. Hardware security module (HSM) support for key management.
🛡️
Zero Trust Architecture
Role-based access control (RBAC) with fine-grained permissions, multi-factor authentication, and continuous verification.
📋
Comprehensive Auditing
Immutable audit trails for all system activities with real-time monitoring and anomaly detection capabilities.
✅
Enterprise Compliance
Built-in compliance features for GDPR, SOC 2, HIPAA, ISO 27001, and other regulatory frameworks with automated reporting.
Security Architecture
LangTrain implements a **defense-in-depth** security model with multiple layers of protection. Security is built into every component from the ground up, not added as an afterthought.
**Core Security Principles:**
- **Zero Trust Architecture**: Never trust, always verify
- **Principle of Least Privilege**: Minimal access rights
- **Data Minimization**: Collect and process only necessary data
- **Security by Design**: Security embedded in development lifecycle
- **Continuous Monitoring**: Real-time threat detection and response
Our security framework follows industry standards including **NIST Cybersecurity Framework**, **ISO 27001**, and **CIS Controls**.
Code Example
from langtrain.security import SecurityManager, EncryptionService
from langtrain.compliance import ComplianceManager
# Initialize comprehensive security manager
security = SecurityManager(
# Encryption configuration
encryption_level="AES-256-GCM",
key_rotation_interval="30d",
key_management="HSM", # Hardware Security Module
# Audit and monitoring
audit_level="detailed",
real_time_monitoring=True,
anomaly_detection=True,
# Compliance settings
compliance_mode=["SOC2", "GDPR", "HIPAA"],
data_residency="EU", # Geographic data restrictions
retention_policy="7y", # Data retention period
)
# Configure field-level encryption
encryption = EncryptionService(
encryption_scope="field", # Field-level vs full-disk
key_derivation="PBKDF2-SHA256",
secure_deletion=True, # Cryptographic erasure
format_preserving=True, # Maintain data format
)
# Enable advanced security monitoring
security.enable_monitoring([
"unauthorized_access_attempts",
"data_access_patterns",
"privilege_escalation",
"data_exfiltration_detection",
"model_poisoning_attempts",
"adversarial_input_detection"
])
# Set up compliance reporting
compliance = ComplianceManager()
compliance.configure_reporting(
frameworks=["SOC2", "GDPR"],
schedule="monthly",
automated_evidence_collection=True
)Access Control & Authentication
LangTrain provides enterprise-grade access control with **multi-layered authentication** and **fine-grained authorization**. Our identity and access management (IAM) system supports integration with existing enterprise identity providers.
**Authentication Methods:**
- **Multi-Factor Authentication (MFA)**: TOTP, SMS, biometrics
- **Single Sign-On (SSO)**: SAML 2.0, OAuth 2.0, OpenID Connect
- **API Key Management**: Rotating keys with expiration policies
- **Certificate-based Authentication**: mTLS for service-to-service
**Authorization Features:**
- **Role-Based Access Control (RBAC)**: Predefined and custom roles
- **Attribute-Based Access Control (ABAC)**: Context-aware permissions
- **Resource-level permissions**: Fine-grained model and data access
- **Time-based access**: Temporary permissions with auto-expiry
Code Example
from langtrain.auth import AuthenticationManager, RoleManager
from langtrain.iam import PolicyEngine
# Configure authentication
auth_manager = AuthenticationManager(
# Multi-factor authentication
mfa_required=True,
mfa_methods=["totp", "sms", "biometric"],
# SSO integration
sso_providers={
"okta": {
"saml_endpoint": "https://company.okta.com/saml",
"certificate_path": "/certs/okta.pem"
},
"azure_ad": {
"tenant_id": "your-tenant-id",
"client_id": "your-client-id"
}
},
# Session management
session_timeout="8h",
concurrent_sessions=1,
idle_timeout="30m"
)
# Define role-based permissions
role_manager = RoleManager()
# Create custom roles with granular permissions
role_manager.create_role("ml_engineer", permissions=[
"models.train",
"models.evaluate",
"datasets.read",
"experiments.create"
])
role_manager.create_role("data_scientist", permissions=[
"models.train",
"models.deploy",
"datasets.read",
"datasets.create",
"experiments.manage"
])
role_manager.create_role("admin", permissions=["*"])
# Configure attribute-based access control
policy_engine = PolicyEngine()
policy_engine.add_policy(
name="sensitive_data_access",
condition="user.clearance_level >= dataset.classification_level",
effect="allow"
)
policy_engine.add_policy(
name="geographic_restriction",
condition="user.location in dataset.allowed_regions",
effect="allow"
)
# API key management with rotation
api_keys = auth_manager.create_api_key(
user_id="user123",
permissions=["models.inference"],
expiry_days=30,
auto_rotate=True,
rate_limit="1000/hour"
)Data Protection & Privacy
Protecting sensitive training data and model outputs is critical for AI systems. LangTrain implements multiple layers of data protection including **encryption**, **anonymization**, and **differential privacy**.
**Data Protection Features:**
- **Encryption at Rest**: AES-256 with customer-managed keys
- **Encryption in Transit**: TLS 1.3 with perfect forward secrecy
- **Data Anonymization**: PII detection and automatic redaction
- **Differential Privacy**: Statistical privacy for training data
- **Secure Multi-party Computation**: Collaborative training without data sharing
- **Federated Learning**: Train models without centralizing data
**Privacy Controls:**
- **Data Lineage Tracking**: Complete audit trail of data usage
- **Right to be Forgotten**: GDPR-compliant data deletion
- **Consent Management**: Granular consent tracking and enforcement
- **Data Minimization**: Automated identification of unnecessary data
Code Example
from langtrain.privacy import (
DataProtectionManager,
DifferentialPrivacy,
PIIDetector,
ConsentManager
)
# Initialize data protection
data_protection = DataProtectionManager(
# Encryption settings
encryption_key_source="customer_managed",
key_rotation_schedule="90d",
# Privacy settings
differential_privacy=True,
privacy_budget=1.0,
noise_multiplier=1.1,
# Data handling
automatic_pii_redaction=True,
data_lineage_tracking=True,
secure_deletion=True
)
# Configure differential privacy for training
dp = DifferentialPrivacy(
epsilon=1.0, # Privacy budget
delta=1e-5, # Failure probability
noise_mechanism="gaussian",
clipping_norm=1.0, # Gradient clipping
sampling_rate=0.01 # Batch sampling rate
)
# Train with differential privacy
model = langtrain.train(
dataset=sensitive_dataset,
privacy_engine=dp,
max_grad_norm=1.0,
noise_multiplier=1.1
)
# PII detection and redaction
pii_detector = PIIDetector(
detection_types=[
"email", "phone", "ssn", "credit_card",
"ip_address", "person_name", "address"
],
confidence_threshold=0.95,
redaction_method="masking" # or "synthetic", "removal"
)
# Process data with automatic PII handling
cleaned_data = pii_detector.process_dataset(
raw_dataset,
preserve_format=True,
audit_redactions=True
)
# Consent management for GDPR compliance
consent_manager = ConsentManager()
# Track user consent
consent_manager.record_consent(
user_id="user123",
data_types=["training_data", "model_outputs"],
purposes=["model_improvement", "research"],
consent_date="2024-01-01",
expiry_date="2025-01-01"
)
# Enforce consent in data processing
if consent_manager.has_valid_consent(user_id, "training_data"):
# Process user data
process_user_data(user_data)
else:
# Handle lack of consent
handle_consent_required(user_id)Threat Detection & Response
LangTrain includes advanced **threat detection** capabilities specifically designed for AI/ML systems. Our security operations center (SOC) monitors for both traditional cyber threats and AI-specific attacks.
**AI-Specific Threat Detection:**
- **Model Poisoning**: Detection of malicious training data
- **Adversarial Attacks**: Real-time detection of adversarial inputs
- **Model Extraction**: Protection against model theft attempts
- **Data Poisoning**: Identification of corrupted datasets
- **Backdoor Detection**: Scanning for hidden triggers in models
**Traditional Security Monitoring:**
- **Intrusion Detection**: Network and host-based monitoring
- **Behavioral Analytics**: User and entity behavior analysis
- **Threat Intelligence**: Integration with external threat feeds
- **Automated Response**: Incident response automation
Code Example
from langtrain.security import (
ThreatDetector,
IncidentResponse,
SecurityMonitor,
AdversarialDefense
)
# Configure comprehensive threat detection
threat_detector = ThreatDetector(
# AI-specific threats
model_poisoning_detection=True,
adversarial_input_detection=True,
data_drift_monitoring=True,
backdoor_scanning=True,
# Traditional security threats
intrusion_detection=True,
behavioral_analytics=True,
threat_intelligence_feeds=[
"mitre_attack", "cve_database", "ai_threat_db"
],
# Detection sensitivity
sensitivity_level="high",
false_positive_threshold=0.05
)
# Set up adversarial defense
adversarial_defense = AdversarialDefense(
detection_methods=[
"input_transformation",
"statistical_analysis",
"ensemble_voting"
],
response_actions=[
"reject_input",
"sanitize_input",
"flag_for_review"
]
)
# Configure automated incident response
incident_response = IncidentResponse()
# Define response playbooks
incident_response.create_playbook(
name="model_poisoning_detected",
triggers=["high_confidence_poisoning_alert"],
actions=[
"isolate_affected_models",
"revert_to_previous_checkpoint",
"notify_security_team",
"initiate_forensic_analysis"
],
escalation_time="15m"
)
incident_response.create_playbook(
name="adversarial_attack_detected",
triggers=["adversarial_input_confirmed"],
actions=[
"block_source_ip",
"enhance_input_filtering",
"collect_attack_samples",
"update_defense_models"
]
)
# Real-time security monitoring
monitor = SecurityMonitor()
monitor.start_monitoring(
components=["api_endpoints", "training_jobs", "data_pipelines"],
metrics=["request_patterns", "resource_usage", "error_rates"],
alert_thresholds={
"failed_auth_attempts": 5,
"unusual_data_access": 10,
"model_performance_drop": 0.1
}
)
# Integration with SIEM systems
monitor.configure_siem_integration(
siem_type="splunk",
endpoint="https://siem.company.com/api",
format="cef",
real_time_streaming=True
)Compliance & Governance
LangTrain provides comprehensive **compliance management** tools to help organizations meet regulatory requirements and internal governance standards. Our platform supports automated compliance monitoring and reporting.
**Supported Frameworks:**
- **SOC 2 Type II**: Controls for security, availability, processing integrity
- **GDPR**: EU data protection regulation compliance
- **HIPAA**: Healthcare data protection (with BAA support)
- **ISO 27001**: Information security management systems
- **PCI DSS**: Payment card industry data security
- **FedRAMP**: US federal cloud security requirements
**Governance Features:**
- **Policy Management**: Centralized policy definition and enforcement
- **Risk Assessment**: Automated security risk evaluation
- **Compliance Dashboards**: Real-time compliance status monitoring
- **Audit Trail**: Immutable logs for compliance audits
- **Automated Reporting**: Scheduled compliance reports
Code Example
from langtrain.compliance import (
ComplianceFramework,
PolicyManager,
RiskAssessment,
AuditLogger
)
# Configure compliance frameworks
compliance = ComplianceFramework(
active_frameworks=["SOC2", "GDPR", "HIPAA"],
# SOC 2 configuration
soc2_controls={
"CC6.1": "logical_access_controls",
"CC6.2": "authentication_credentials",
"CC6.3": "authorized_access_changes",
"CC7.1": "data_transmission_controls"
},
# GDPR configuration
gdpr_settings={
"data_protection_officer": "dpo@company.com",
"lawful_basis_tracking": True,
"breach_notification_time": "72h",
"consent_management": True
},
# HIPAA configuration
hipaa_settings={
"covered_entity": True,
"business_associate_agreement": True,
"minimum_necessary_standard": True,
"breach_threshold": 500
}
)
# Define and enforce policies
policy_manager = PolicyManager()
# Data handling policies
policy_manager.create_policy(
name="data_retention",
description="Automatic data deletion after retention period",
rules=[
"training_data.max_age = 7_years",
"logs.max_age = 3_years",
"backups.max_age = 10_years"
],
enforcement="automatic"
)
policy_manager.create_policy(
name="cross_border_transfer",
description="Restrictions on international data transfers",
rules=[
"pii_data.allowed_regions = ['EU', 'US']",
"transfer_mechanism = 'standard_contractual_clauses'",
"adequacy_decision_required = True"
],
enforcement="blocking"
)
# Automated risk assessment
risk_assessment = RiskAssessment()
risk_report = risk_assessment.evaluate(
scope="full_platform",
frameworks=["NIST", "ISO27001"],
assessment_type="quarterly",
risk_categories=[
"data_security",
"access_control",
"business_continuity",
"vendor_management",
"incident_response"
]
)
# Continuous compliance monitoring
compliance.start_monitoring(
check_frequency="daily",
automated_remediation=True,
# Compliance metrics
track_metrics=[
"access_review_completion",
"security_training_completion",
"vulnerability_remediation_time",
"incident_response_time",
"backup_success_rate"
]
)
# Generate compliance reports
compliance_report = compliance.generate_report(
framework="SOC2",
period="2024-Q1",
include_evidence=True,
format="pdf",
# Custom attestations
attestations={
"management_review": "2024-01-15",
"independent_audit": "2024-02-01",
"penetration_test": "2024-01-20"
}
)
# Audit logging for compliance
audit_logger = AuditLogger(
immutable_storage=True,
encryption=True,
digital_signatures=True,
retention_period="10y"
)
# Log all security-relevant events
audit_logger.log_event(
event_type="user_authentication",
user_id="admin@company.com",
timestamp="2024-01-15T10:30:00Z",
result="success",
additional_data={
"ip_address": "10.0.1.100",
"user_agent": "Mozilla/5.0...",
"mfa_method": "totp"
}
)Security Best Practices
Follow these **security best practices** to maximize the protection of your LangTrain deployment. These recommendations are based on industry standards and real-world deployment experience.
**Infrastructure Security:**
- Use private networks and VPCs for all components
- Implement network segmentation and micro-segmentation
- Enable Web Application Firewall (WAF) protection
- Use container security scanning and runtime protection
- Implement secrets management with rotation
**Operational Security:**
- Regular security assessments and penetration testing
- Incident response plan testing and updates
- Security awareness training for all team members
- Vulnerability management and patch management
- Backup and disaster recovery testing
Code Example
# Security hardening checklist for production deployment
# 1. Network Security
network_config = {
"vpc_isolation": True,
"private_subnets_only": True,
"network_acls": "restrictive",
"security_groups": "least_privilege",
"waf_enabled": True,
"ddos_protection": True
}
# 2. Infrastructure hardening
infrastructure_security = {
"container_scanning": True,
"runtime_protection": True,
"host_intrusion_detection": True,
"file_integrity_monitoring": True,
"privileged_container_restrictions": True
}
# 3. Secrets management
from langtrain.security import SecretsManager
secrets = SecretsManager(
provider="aws_secrets_manager", # or "vault", "azure_kv"
encryption="AES-256",
rotation_schedule="30d",
access_logging=True
)
# Store sensitive configuration
secrets.store_secret(
name="database_password",
value="super_secure_password",
tags={"environment": "production", "service": "database"}
)
# 4. Security monitoring setup
monitoring_config = {
"log_aggregation": "centralized",
"siem_integration": True,
"real_time_alerts": True,
"behavioral_analytics": True,
"threat_hunting": "automated"
}
# 5. Backup and disaster recovery
backup_config = {
"backup_frequency": "4h",
"backup_encryption": True,
"cross_region_replication": True,
"point_in_time_recovery": True,
"disaster_recovery_testing": "monthly"
}
# 6. Regular security tasks (automation recommended)
security_tasks = [
"vulnerability_scanning_weekly",
"access_review_monthly",
"penetration_testing_quarterly",
"security_training_quarterly",
"incident_response_drill_biannual",
"compliance_audit_annual"
]
# 7. Deployment security checklist
deployment_checklist = {
"secure_defaults": True,
"unnecessary_services_disabled": True,
"debug_mode_disabled": True,
"error_messages_sanitized": True,
"security_headers_enabled": True,
"rate_limiting_configured": True,
"input_validation_comprehensive": True,
"output_encoding_enabled": True
}