L

Initializing Studio...

Documentation
Last updated: October 10, 2025

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog

RLHF - Reinforcement Learning from Human Feedback

Master Reinforcement Learning from Human Feedback (RLHF) to align language models with human preferences, create safer AI systems, and improve response quality through human feedback integration.

Key Features

👥

Human Alignment

Align language models with human preferences and values through iterative feedback and reinforcement learning.

🛡️

Safety & Control

Build safer AI systems by incorporating human judgment and reducing harmful or inappropriate outputs.

✨

Quality Improvement

Significantly improve response quality, relevance, and engagement through preference-based optimization.

🔄

Iterative Learning

Continuously improve model behavior through ongoing human feedback collection and model updates.

Understanding RLHF

Reinforcement Learning from Human Feedback (RLHF) is a powerful technique for aligning language models with human preferences and values. It's the key technology behind models like ChatGPT, Claude, and other successful conversational AI systems.

What is RLHF?

RLHF is a multi-stage training process that uses human feedback to teach language models to generate responses that are more helpful, harmless, and honest. Instead of only optimizing for next-token prediction, RLHF optimizes for human-preferred outcomes.

The Three-Stage RLHF Process:

Stage 1: Supervised Fine-Tuning (SFT)
- Start with a pre-trained language model
- Fine-tune on high-quality human demonstrations
- Creates an instruction-following base model
- Typically uses thousands of human-written examples

Stage 2: Reward Model Training
- Collect human preference data (comparisons between outputs)
- Train a reward model to predict human preferences
- The reward model learns to score outputs based on human values
- Uses techniques like Bradley-Terry model for preference learning

Stage 3: Reinforcement Learning
- Use the reward model to train the language model via RL
- Typically uses Proximal Policy Optimization (PPO)
- Balances reward maximization with staying close to the original model
- Includes KL-divergence penalty to prevent mode collapse

Why RLHF is Important:

Alignment with Human Values:
- Models learn what humans actually want, not just what they say
- Captures nuanced preferences that are hard to specify in rules
- Enables teaching complex behaviors like helpfulness and safety

Quality Improvement:
- Significantly improves response quality and relevance
- Reduces harmful, biased, or inappropriate outputs
- Creates more engaging and useful conversational AI

Safety and Control:
- Provides a framework for building safer AI systems
- Allows incorporation of human judgment and oversight
- Enables iterative improvement based on real-world feedback

Key Challenges:

Reward Hacking:
- Models may exploit reward model weaknesses
- Can lead to outputs that score high but aren't actually good
- Requires careful reward model design and regularization

Human Feedback Quality:
- Inconsistent human preferences
- Annotator bias and subjectivity
- Need for clear guidelines and quality control

Computational Cost:
- RL training is computationally expensive
- Requires multiple model copies during training
- Significantly more complex than supervised learning

Distribution Shift:
- Reward model may not generalize to new situations
- Policy may discover out-of-distribution behaviors
- Requires ongoing monitoring and updates
Code Example
# RLHF implementation overview using TRL (Transformer Reinforcement Learning)
import torch
from transformers import (
    AutoTokenizer, AutoModelForCausalLM, 
    AutoModelForSequenceClassification
)
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
from datasets import Dataset
import numpy as np
from typing import List, Dict

class RLHFPipeline:
    def __init__(self, model_name: str, reward_model_name: str = None):
        self.model_name = model_name
        self.reward_model_name = reward_model_name
        self.tokenizer = None
        self.sft_model = None
        self.reward_model = None
        self.ppo_model = None
        
    def stage1_supervised_fine_tuning(self, sft_dataset: Dataset):
        """Stage 1: Supervised Fine-Tuning on human demonstrations."""
        
        print("Stage 1: Supervised Fine-Tuning")
        print("=" * 40)
        
        # Load tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        self.sft_model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
        
        # Prepare SFT dataset
        def format_sft_example(example):
            """Format example for SFT training."""
            prompt = f"Human: {example['prompt']}\n\nAssistant: "
            response = example['chosen']  # Use human-preferred response
            full_text = prompt + response + self.tokenizer.eos_token
            return {"text": full_text}
        
        formatted_dataset = sft_dataset.map(format_sft_example)
        
        # SFT training (simplified - use full Trainer in practice)
        print(f"SFT dataset size: {len(formatted_dataset)}")
        print("SFT training would happen here...")
        print("✓ Stage 1 completed: SFT model ready")
        
        # Save SFT model
        self.sft_model.save_pretrained("./sft_model")
        self.tokenizer.save_pretrained("./sft_model")
        
    def stage2_reward_model_training(self, preference_dataset: Dataset):
        """Stage 2: Train reward model on human preferences."""
        
        print("\nStage 2: Reward Model Training")
        print("=" * 40)
        
        # Load model for reward modeling (typically smaller than main model)
        reward_model_name = self.reward_model_name or self.model_name
        
        self.reward_model = AutoModelForSequenceClassification.from_pretrained(
            reward_model_name,
            num_labels=1,  # Single scalar reward
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
        
        # Prepare preference dataset
        def format_preference_example(example):
            """Format preference comparison for reward model training."""
            prompt = example['prompt']
            chosen = example['chosen']
            rejected = example['rejected']
            
            # Create prompt + response pairs
            chosen_text = f"Human: {prompt}\n\nAssistant: {chosen}"
            rejected_text = f"Human: {prompt}\n\nAssistant: {rejected}"
            
            return {
                'chosen': chosen_text,
                'rejected': rejected_text
            }
        
        formatted_preferences = preference_dataset.map(format_preference_example)
        
        # Reward model training (simplified)
        print(f"Preference dataset size: {len(formatted_preferences)}")
        print("Reward model training would happen here...")
        print("Training on preference pairs (chosen > rejected)")
        print("✓ Stage 2 completed: Reward model ready")
        
        # Save reward model
        self.reward_model.save_pretrained("./reward_model")
        
    def stage3_ppo_training(self, prompts_dataset: Dataset, ppo_config: PPOConfig = None):
        """Stage 3: PPO training using reward model."""
        
        print("\nStage 3: PPO Training")
        print("=" * 40)
        
        # Default PPO configuration
        if ppo_config is None:
            ppo_config = PPOConfig(
                model_name="./sft_model",
                learning_rate=1.41e-5,
                batch_size=16,
                mini_batch_size=4,
                gradient_accumulation_steps=1,
                optimize_cuda_cache=True,
                early_stopping=False,
                target_kl=0.1,
                ppo_epochs=4,
                seed=0,
                init_kl_coef=0.2,
                adap_kl_ctrl=True,
            )
        
        # Load model with value head for PPO
        self.ppo_model = AutoModelForCausalLMWithValueHead.from_pretrained(
            "./sft_model",
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
        
        # Load reward model
        reward_model = AutoModelForSequenceClassification.from_pretrained(
            "./reward_model",
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
        
        # Create PPO trainer
        ppo_trainer = PPOTrainer(
            config=ppo_config,
            model=self.ppo_model,
            ref_model=None,  # Will use model copy as reference
            tokenizer=self.tokenizer,
        )
        
        # Prepare prompts for PPO training
        prompts = [f"Human: {prompt}\n\nAssistant: " for prompt in prompts_dataset['prompt']]
        
        print(f"PPO training on {len(prompts)} prompts")
        
        # PPO training loop (simplified)
        for epoch in range(3):  # Limited epochs for demonstration
            print(f"\nPPO Epoch {epoch + 1}")
            
            for batch_idx in range(0, len(prompts), ppo_config.batch_size):
                batch_prompts = prompts[batch_idx:batch_idx + ppo_config.batch_size]
                
                # Generate responses
                prompt_tensors = [
                    self.tokenizer.encode(prompt, return_tensors="pt")[0] 
                    for prompt in batch_prompts
                ]
                
                # Generate responses from current policy
                response_tensors = []
                for prompt_tensor in prompt_tensors:
                    response = self.ppo_model.generate(
                        prompt_tensor.unsqueeze(0),
                        max_new_tokens=50,
                        do_sample=True,
                        temperature=0.7,
                        pad_token_id=self.tokenizer.eos_token_id
                    )
                    response_tensors.append(response[0])
                
                # Calculate rewards using reward model
                rewards = []
                for prompt_tensor, response_tensor in zip(prompt_tensors, response_tensors):
                    # Combine prompt and response
                    full_text = self.tokenizer.decode(response_tensor, skip_special_tokens=True)
                    
                    # Get reward score
                    inputs = self.tokenizer(full_text, return_tensors="pt", truncation=True, max_length=512)
                    inputs = {k: v.to(reward_model.device) for k, v in inputs.items()}
                    
                    with torch.no_grad():
                        reward_score = reward_model(**inputs).logits[0, 0].item()
                    
                    rewards.append(reward_score)
                
                # Convert to tensors
                rewards = [torch.tensor(r) for r in rewards]
                
                # PPO training step
                stats = ppo_trainer.step(prompt_tensors, response_tensors, rewards)
                
                if batch_idx % 4 == 0:  # Log every few batches
                    print(f"  Batch {batch_idx//ppo_config.batch_size + 1}: "
                          f"Mean reward: {np.mean([r.item() for r in rewards]):.3f}")
        
        print("✓ Stage 3 completed: RLHF training finished")
        
        # Save final model
        self.ppo_model.save_pretrained("./rlhf_model")
        
        return ppo_trainer
    
    def evaluate_rlhf_model(self, test_prompts: List[str]):
        """Evaluate the RLHF-trained model."""
        
        print("\nEvaluating RLHF Model")
        print("=" * 40)
        
        if self.ppo_model is None:
            # Load the trained model
            self.ppo_model = AutoModelForCausalLMWithValueHead.from_pretrained("./rlhf_model")
        
        self.ppo_model.eval()
        
        for i, prompt in enumerate(test_prompts, 1):
            formatted_prompt = f"Human: {prompt}\n\nAssistant: "
            
            inputs = self.tokenizer(formatted_prompt, return_tensors="pt")
            inputs = {k: v.to(self.ppo_model.device) for k, v in inputs.items()}
            
            # Generate response
            with torch.no_grad():
                outputs = self.ppo_model.generate(
                    **inputs,
                    max_new_tokens=150,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    pad_token_id=self.tokenizer.eos_token_id
                )
            
            response = self.tokenizer.decode(
                outputs[0][inputs['input_ids'].shape[1]:], 
                skip_special_tokens=True
            )
            
            print(f"\nTest {i}:")
            print(f"Human: {prompt}")
            print(f"Assistant: {response}")
            print("-" * 40)

# Sample data preparation functions
def create_sft_dataset():
    """Create sample SFT dataset with human demonstrations."""
    
    sft_examples = [
        {
            "prompt": "Explain quantum computing in simple terms.",
            "chosen": "Quantum computing uses quantum mechanical phenomena like superposition and entanglement to process information in ways that classical computers cannot. Unlike classical bits that are either 0 or 1, quantum bits (qubits) can exist in multiple states simultaneously, potentially allowing quantum computers to solve certain problems exponentially faster than classical computers."
        },
        {
            "prompt": "How can I improve my sleep quality?",
            "chosen": "Here are some evidence-based strategies to improve sleep quality: 1) Maintain a consistent sleep schedule, 2) Create a relaxing bedtime routine, 3) Ensure your bedroom is cool, dark, and quiet, 4) Avoid caffeine and screens before bedtime, 5) Get regular exercise during the day, and 6) Consider relaxation techniques like meditation or deep breathing."
        },
        {
            "prompt": "Write a Python function to reverse a string.",
            "chosen": "Here's a simple Python function to reverse a string:\n\ndef reverse_string(s):\n    return s[::-1]\n\n# Example usage:\noriginal = 'hello'\nreversed_str = reverse_string(original)\nprint(reversed_str)  # Output: 'olleh'\n\nThis uses Python's slice notation with a step of -1 to reverse the string efficiently."
        }
    ]
    
    return Dataset.from_list(sft_examples)

def create_preference_dataset():
    """Create sample preference dataset for reward model training."""
    
    preference_examples = [
        {
            "prompt": "What's the capital of France?",
            "chosen": "The capital of France is Paris. It's a beautiful city known for its art, culture, cuisine, and iconic landmarks like the Eiffel Tower and Louvre Museum.",
            "rejected": "Paris is the capital. It's in France and has some buildings and stuff."
        },
        {
            "prompt": "How do I bake a chocolate cake?",
            "chosen": "To bake a chocolate cake, you'll need: flour, sugar, cocoa powder, eggs, butter, baking powder, and milk. Mix dry ingredients, cream butter and sugar, add eggs, then alternate adding dry ingredients and milk. Bake at 350°F for 25-30 minutes. Let me know if you'd like a detailed recipe!",
            "rejected": "Just mix some chocolate stuff together and put it in the oven until it looks done. Should work fine."
        },
        {
            "prompt": "Is it safe to eat raw eggs?",
            "chosen": "Eating raw eggs carries some risk of Salmonella infection, though the risk is relatively low (about 1 in 20,000 eggs). Pasteurized eggs are safer for raw consumption. If you're pregnant, elderly, or immunocompromised, it's best to avoid raw eggs. For recipes requiring raw eggs, consider pasteurized alternatives.",
            "rejected": "Raw eggs are totally fine to eat, there's no risk at all. Eat as many as you want!"
        }
    ]
    
    return Dataset.from_list(preference_examples)

def create_prompts_dataset():
    """Create sample prompts for PPO training."""
    
    prompts = [
        "Explain the importance of exercise.",
        "What's the best way to learn a new language?",
        "How does photosynthesis work?",
        "Give me tips for public speaking.",
        "What are the benefits of meditation?",
        "How do I start investing in stocks?",
        "Explain machine learning to a beginner.",
        "What's the difference between weather and climate?",
    ]
    
    return Dataset.from_dict({"prompt": prompts})

# Main execution example
if __name__ == "__main__":
    # Initialize RLHF pipeline
    rlhf = RLHFPipeline(
        model_name="microsoft/DialoGPT-medium",  # Use smaller model for demo
        reward_model_name="microsoft/DialoGPT-small"
    )
    
    # Create sample datasets
    sft_data = create_sft_dataset()
    preference_data = create_preference_dataset()
    prompts_data = create_prompts_dataset()
    
    # Run RLHF pipeline
    print("Starting RLHF Pipeline")
    print("=" * 50)
    
    # Stage 1: SFT
    rlhf.stage1_supervised_fine_tuning(sft_data)
    
    # Stage 2: Reward Model
    rlhf.stage2_reward_model_training(preference_data)
    
    # Stage 3: PPO Training
    ppo_config = PPOConfig(
        model_name="./sft_model",
        learning_rate=1.41e-5,
        batch_size=4,  # Small batch for demo
        mini_batch_size=2,
        ppo_epochs=2,  # Fewer epochs for demo
        target_kl=0.1,
    )
    
    rlhf.stage3_ppo_training(prompts_data, ppo_config)
    
    # Evaluate final model
    test_prompts = [
        "What's the best way to stay healthy?",
        "Explain artificial intelligence.",
        "How do I write a good email?"
    ]
    
    rlhf.evaluate_rlhf_model(test_prompts)
    
    print("\nRLHF Pipeline completed successfully!")

Reward Model Design

The reward model is the heart of RLHF, translating human preferences into scalar rewards that guide the language model's training. Designing effective reward models is crucial for successful RLHF.

Reward Model Architecture:

Base Model Selection:
- Often uses the same architecture as the policy model but smaller
- Can be initialized from the SFT model or trained from scratch
- Typical sizes: 350M-6B parameters for reward models

Output Layer Design:
- Single scalar output representing reward/preference score
- Linear layer with no activation (raw logits)
- Some approaches use multiple output heads for different criteria

Training Objective:

Bradley-Terry Model:
The most common approach uses the Bradley-Terry model for preference learning:

$$P(y_1 \succ y_2 | x) = \frac{\exp(r(x, y_1))}{\exp(r(x, y_1)) + \exp(r(x, y_2))}$$

Where:
- $x$ is the input prompt
- $y_1$ and $y_2$ are two responses
- $r(x, y)$ is the reward model's score
- $y_1 \succ y_2$ means $y_1$ is preferred over $y_2$

Loss Function:
$$L = -\log P(y_{chosen} \succ y_{rejected} | x)$$

Data Collection Strategies:

Human Preference Collection:
- Present pairs of model outputs to human annotators
- Ask "Which response is better?" with clear criteria
- Collect rankings rather than just binary preferences
- Include confidence scores from annotators

Quality Control:
- Multiple annotators per comparison
- Inter-annotator agreement metrics
- Clear annotation guidelines
- Regular calibration sessions

Active Learning:
- Select most informative comparisons
- Focus on areas where the model is uncertain
- Iteratively improve the reward model

Reward Model Training Best Practices:

Data Preprocessing:
- Balance positive and negative examples
- Handle ties and close comparisons appropriately
- Filter out low-confidence annotations
- Ensure diverse prompt coverage

Training Techniques:
- Use appropriate learning rates (typically lower than SFT)
- Implement dropout for regularization
- Monitor validation accuracy carefully
- Use early stopping to prevent overfitting

Evaluation Metrics:
- Accuracy on held-out preference data
- Correlation with human judgments
- Consistency across different prompt types
- Robustness to adversarial examples

Common Pitfalls and Solutions:

Reward Hacking:
- Problem: Model exploits reward model weaknesses
- Solution: Regularization, ensemble methods, adversarial training

Length Bias:
- Problem: Reward model prefers longer responses
- Solution: Length-normalized scoring, explicit length control

Distribution Shift:
- Problem: Reward model fails on new data distributions
- Solution: Continual learning, diverse training data, domain adaptation

Annotation Bias:
- Problem: Human preferences may be biased or inconsistent
- Solution: Diverse annotator pool, bias detection, demographic analysis
Code Example
# Comprehensive reward model implementation
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
    AutoTokenizer, AutoModelForSequenceClassification,
    AutoConfig, Trainer, TrainingArguments
)
from datasets import Dataset
from sklearn.metrics import accuracy_score
import numpy as np
from typing import Dict, List, Tuple, Optional

class RewardModelTrainer:
    def __init__(self, base_model_name: str, max_length: int = 512):
        self.base_model_name = base_model_name
        self.max_length = max_length
        self.tokenizer = None
        self.model = None
        
    def setup_reward_model(self, dropout_rate: float = 0.1):
        """Setup reward model architecture."""
        
        # Load tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
            
        # Load config and modify for reward modeling
        config = AutoConfig.from_pretrained(self.base_model_name)
        config.num_labels = 1  # Single scalar reward
        config.hidden_dropout_prob = dropout_rate
        config.attention_probs_dropout_prob = dropout_rate
        
        # Load model for sequence classification
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.base_model_name,
            config=config,
            torch_dtype=torch.bfloat16
        )
        
        # Modify the classifier head for reward modeling
        self.model.classifier = nn.Sequential(
            nn.Dropout(dropout_rate),
            nn.Linear(config.hidden_size, config.hidden_size),
            nn.Tanh(),
            nn.Dropout(dropout_rate),
            nn.Linear(config.hidden_size, 1)  # Single reward score
        )
        
        print(f"Reward model setup completed:")
        print(f"- Base model: {self.base_model_name}")
        print(f"- Parameters: {self.model.num_parameters():,}")
        print(f"- Dropout rate: {dropout_rate}")
        
    def prepare_preference_dataset(self, preference_data: List[Dict]) -> Dataset:
        """Prepare preference comparison dataset."""
        
        def tokenize_pair(example):
            """Tokenize chosen and rejected responses."""
            
            prompt = example['prompt']
            chosen = example['chosen']
            rejected = example['rejected']
            
            # Create full texts
            chosen_text = f"{prompt}\n\n{chosen}"
            rejected_text = f"{prompt}\n\n{rejected}"
            
            # Tokenize both
            chosen_tokens = self.tokenizer(
                chosen_text,
                truncation=True,
                padding='max_length',
                max_length=self.max_length,
                return_tensors="pt"
            )
            
            rejected_tokens = self.tokenizer(
                rejected_text,
                truncation=True,
                padding='max_length',
                max_length=self.max_length,
                return_tensors="pt"
            )
            
            return {
                'chosen_input_ids': chosen_tokens['input_ids'].squeeze(),
                'chosen_attention_mask': chosen_tokens['attention_mask'].squeeze(),
                'rejected_input_ids': rejected_tokens['input_ids'].squeeze(),
                'rejected_attention_mask': rejected_tokens['attention_mask'].squeeze(),
            }
        
        # Convert to dataset and tokenize
        dataset = Dataset.from_list(preference_data)
        tokenized_dataset = dataset.map(tokenize_pair, remove_columns=dataset.column_names)
        
        print(f"Prepared preference dataset with {len(tokenized_dataset)} pairs")
        return tokenized_dataset
    
    def create_pairwise_dataset(self, tokenized_dataset: Dataset) -> Dataset:
        """Create pairwise dataset for Bradley-Terry training."""
        
        pairwise_examples = []
        
        for example in tokenized_dataset:
            # Chosen example (label = 1)
            pairwise_examples.append({
                'input_ids': example['chosen_input_ids'],
                'attention_mask': example['chosen_attention_mask'],
                'labels': torch.tensor(1.0)  # Chosen is better
            })
            
            # Rejected example (label = 0)
            pairwise_examples.append({
                'input_ids': example['rejected_input_ids'],
                'attention_mask': example['rejected_attention_mask'],
                'labels': torch.tensor(0.0)  # Rejected is worse
            })
        
        return Dataset.from_list(pairwise_examples)
    
    def compute_pairwise_loss(self, chosen_rewards, rejected_rewards):
        """Compute Bradley-Terry pairwise ranking loss."""
        
        # Bradley-Terry loss: -log(sigmoid(chosen - rejected))
        diff = chosen_rewards - rejected_rewards
        loss = -F.logsigmoid(diff).mean()
        
        return loss
    
    def train_reward_model(self,
                          train_dataset: Dataset,
                          eval_dataset: Dataset = None,
                          output_dir: str = "./reward_model",
                          num_epochs: int = 3,
                          batch_size: int = 8,
                          learning_rate: float = 2e-5,
                          warmup_ratio: float = 0.1):
        """Train the reward model on preference data."""
        
        # Custom trainer for pairwise ranking
        class RewardTrainer(Trainer):
            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)
                self.prediction_step_count = 0
            
            def compute_loss(self, model, inputs, return_outputs=False):
                """Compute pairwise ranking loss."""
                
                # Split batch into chosen and rejected
                batch_size = inputs['input_ids'].size(0) // 2
                
                chosen_inputs = {
                    'input_ids': inputs['input_ids'][:batch_size],
                    'attention_mask': inputs['attention_mask'][:batch_size]
                }
                
                rejected_inputs = {
                    'input_ids': inputs['input_ids'][batch_size:],
                    'attention_mask': inputs['attention_mask'][batch_size:]
                }
                
                # Get reward scores
                chosen_outputs = model(**chosen_inputs)
                rejected_outputs = model(**rejected_inputs)
                
                chosen_rewards = chosen_outputs.logits.squeeze(-1)
                rejected_rewards = rejected_outputs.logits.squeeze(-1)
                
                # Compute pairwise loss
                loss = self.compute_pairwise_loss(chosen_rewards, rejected_rewards)
                
                return (loss, {'chosen_rewards': chosen_rewards, 'rejected_rewards': rejected_rewards}) if return_outputs else loss
            
            def compute_pairwise_loss(self, chosen_rewards, rejected_rewards):
                """Bradley-Terry loss implementation."""
                diff = chosen_rewards - rejected_rewards
                return -F.logsigmoid(diff).mean()
            
            def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys=None):
                """Custom prediction step for evaluation."""
                
                inputs = self._prepare_inputs(inputs)
                
                with torch.no_grad():
                    outputs = model(**inputs)
                    rewards = outputs.logits.squeeze(-1)
                    
                    # For evaluation, we compute accuracy of preference predictions
                    batch_size = rewards.size(0) // 2
                    chosen_rewards = rewards[:batch_size]
                    rejected_rewards = rewards[batch_size:]
                    
                    # Accuracy: how often chosen > rejected
                    correct = (chosen_rewards > rejected_rewards).float()
                    accuracy = correct.mean()
                    
                    loss = self.compute_pairwise_loss(chosen_rewards, rejected_rewards)
                
                return (loss, accuracy, accuracy)  # Return accuracy as both predictions and labels
        
        # Prepare dataset for pairwise training
        pairwise_train = self.create_pairwise_dataset(train_dataset)
        pairwise_eval = self.create_pairwise_dataset(eval_dataset) if eval_dataset else None
        
        # Training arguments
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=num_epochs,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            gradient_accumulation_steps=1,
            learning_rate=learning_rate,
            weight_decay=0.01,
            warmup_ratio=warmup_ratio,
            logging_steps=50,
            save_steps=500,
            eval_steps=500 if pairwise_eval else None,
            evaluation_strategy="steps" if pairwise_eval else "no",
            save_strategy="steps",
            load_best_model_at_end=True if pairwise_eval else False,
            metric_for_best_model="eval_loss" if pairwise_eval else None,
            greater_is_better=False,
            report_to="none",
            bf16=True,
            dataloader_pin_memory=False,
            remove_unused_columns=False,
        )
        
        # Create trainer
        trainer = RewardTrainer(
            model=self.model,
            args=training_args,
            train_dataset=pairwise_train,
            eval_dataset=pairwise_eval,
            tokenizer=self.tokenizer,
        )
        
        # Train
        print(f"Starting reward model training...")
        print(f"Training examples: {len(pairwise_train)}")
        if pairwise_eval:
            print(f"Evaluation examples: {len(pairwise_eval)}")
        
        trainer.train()
        
        # Save model
        trainer.save_model()
        self.tokenizer.save_pretrained(output_dir)
        
        print(f"Reward model training completed! Saved to {output_dir}")
        
        return trainer
    
    def evaluate_reward_model(self, test_data: List[Dict]) -> Dict:
        """Evaluate reward model on test data."""
        
        self.model.eval()
        results = {
            'accuracy': 0.0,
            'mean_chosen_reward': 0.0,
            'mean_rejected_reward': 0.0,
            'reward_difference': 0.0
        }
        
        correct_predictions = 0
        chosen_rewards = []
        rejected_rewards = []
        
        for example in test_data:
            prompt = example['prompt']
            chosen = example['chosen']
            rejected = example['rejected']
            
            # Score chosen response
            chosen_text = f"{prompt}\n\n{chosen}"
            chosen_inputs = self.tokenizer(
                chosen_text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=self.max_length
            )
            chosen_inputs = {k: v.to(self.model.device) for k, v in chosen_inputs.items()}
            
            with torch.no_grad():
                chosen_score = self.model(**chosen_inputs).logits[0, 0].item()
            
            # Score rejected response
            rejected_text = f"{prompt}\n\n{rejected}"
            rejected_inputs = self.tokenizer(
                rejected_text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=self.max_length
            )
            rejected_inputs = {k: v.to(self.model.device) for k, v in rejected_inputs.items()}
            
            with torch.no_grad():
                rejected_score = self.model(**rejected_inputs).logits[0, 0].item()
            
            # Check if model correctly prefers chosen over rejected
            if chosen_score > rejected_score:
                correct_predictions += 1
            
            chosen_rewards.append(chosen_score)
            rejected_rewards.append(rejected_score)
        
        # Calculate metrics
        results['accuracy'] = correct_predictions / len(test_data)
        results['mean_chosen_reward'] = np.mean(chosen_rewards)
        results['mean_rejected_reward'] = np.mean(rejected_rewards)
        results['reward_difference'] = results['mean_chosen_reward'] - results['mean_rejected_reward']
        
        return results
    
    def get_reward_score(self, prompt: str, response: str) -> float:
        """Get reward score for a prompt-response pair."""
        
        self.model.eval()
        
        text = f"{prompt}\n\n{response}"
        inputs = self.tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            max_length=self.max_length
        )
        inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
        
        with torch.no_grad():
            score = self.model(**inputs).logits[0, 0].item()
        
        return score

# Example usage and testing
def create_sample_preference_data():
    """Create sample preference data for training."""
    
    preference_data = [
        {
            "prompt": "Explain the concept of gravity.",
            "chosen": "Gravity is a fundamental force of nature that causes objects with mass to attract each other. According to Einstein's theory of general relativity, gravity is not actually a force, but rather the curvature of spacetime caused by mass and energy. This curvature guides the motion of objects, making them appear to be attracted to each other.",
            "rejected": "Gravity is when things fall down because they're heavy."
        },
        {
            "prompt": "How do I cook pasta?",
            "chosen": "To cook pasta: 1) Bring a large pot of salted water to boil, 2) Add pasta and stir occasionally, 3) Cook according to package directions (usually 8-12 minutes) until al dente, 4) Drain and serve immediately. The key is using plenty of water and not overcooking.",
            "rejected": "Put pasta in water and heat it until it's soft. Should be fine."
        },
        {
            "prompt": "What causes climate change?",
            "chosen": "Climate change is primarily caused by increased concentrations of greenhouse gases in the atmosphere, mainly from human activities like burning fossil fuels, deforestation, and industrial processes. These gases trap heat from the sun, leading to global warming and associated climate impacts like sea level rise, extreme weather, and ecosystem disruption.",
            "rejected": "The sun gets hotter sometimes and that changes the climate. It's natural."
        }
    ]
    
    return preference_data

if __name__ == "__main__":
    # Initialize reward model trainer
    trainer = RewardModelTrainer("microsoft/DialoGPT-small", max_length=256)
    
    # Setup model
    trainer.setup_reward_model(dropout_rate=0.1)
    
    # Create sample data
    preference_data = create_sample_preference_data()
    
    # Prepare dataset
    dataset = trainer.prepare_preference_dataset(preference_data)
    
    # Split for training and evaluation
    train_size = int(0.8 * len(dataset))
    train_dataset = dataset.select(range(train_size))
    eval_dataset = dataset.select(range(train_size, len(dataset)))
    
    # Train reward model
    reward_trainer = trainer.train_reward_model(
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        output_dir="./sample_reward_model",
        num_epochs=2,
        batch_size=2,  # Small batch for demo
        learning_rate=5e-5
    )
    
    # Evaluate model
    results = trainer.evaluate_reward_model(preference_data)
    print("\nReward Model Evaluation Results:")
    for metric, value in results.items():
        print(f"{metric}: {value:.4f}")
    
    # Test individual scoring
    print("\nTesting individual reward scoring:")
    test_prompt = "What's the best way to learn programming?"
    good_response = "Start with a beginner-friendly language like Python, practice regularly with small projects, and don't be afraid to make mistakes - they're part of learning!"
    bad_response = "Just read some books about it."
    
    good_score = trainer.get_reward_score(test_prompt, good_response)
    bad_score = trainer.get_reward_score(test_prompt, bad_response)
    
    print(f"Good response score: {good_score:.4f}")
    print(f"Bad response score: {bad_score:.4f}")
    print(f"Difference: {good_score - bad_score:.4f}")
    
    print("\nReward model training completed!")

PPO Implementation

Proximal Policy Optimization (PPO) is the most commonly used reinforcement learning algorithm for RLHF. It provides a stable and efficient way to update the language model policy using rewards from the reward model.

PPO Algorithm Overview:

Core Idea:
PPO constrains policy updates to prevent large changes that could destabilize training. It uses a clipped objective function that limits how much the policy can change in a single update.

Key Components:

1. Policy Network:
- The language model being trained
- Generates responses given prompts
- Updated based on reward signals

2. Value Network:
- Estimates expected future rewards
- Often shares parameters with policy network
- Used for variance reduction in policy gradients

3. Reference Model:
- Copy of the original policy (frozen)
- Used to compute KL divergence penalty
- Prevents the policy from deviating too much

4. Reward Model:
- Trained in previous stage
- Provides scalar rewards for generated responses
- Guides the policy optimization

PPO Objective Function:

The PPO objective combines several terms:

$$L^{PPO}(\theta) = \mathbb{E}[\min(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon)A_t)]$$

Where:
- $r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$ is the probability ratio
- $A_t$ is the advantage estimate
- $\epsilon$ is the clipping parameter (typically 0.2)
- The clip function prevents large policy updates

Additional Terms:
- KL Penalty: $\beta \cdot D_{KL}[\pi_\theta || \pi_{ref}]$ to stay close to reference
- Value Loss: $(V_\theta(s_t) - R_t)^2$ for value function training
- Entropy Bonus: $\alpha \cdot H[\pi_\theta]$ to encourage exploration

PPO Training Process:

1. Data Collection:
- Generate responses using current policy
- Compute rewards using reward model
- Calculate advantages using value estimates

2. Policy Update:
- Multiple epochs of gradient updates
- Use collected data batch repeatedly
- Clip gradients to prevent instability

3. KL Monitoring:
- Monitor KL divergence from reference model
- Adjust KL penalty coefficient if needed
- Early stopping if KL gets too large

Implementation Challenges:

Memory Management:
- Need multiple model copies (policy, value, reference)
- Large sequence lengths for language modeling
- Gradient accumulation across sequences

Reward Engineering:
- Reward hacking and exploitation
- Balancing different reward components
- Handling sparse or delayed rewards

Training Stability:
- Careful hyperparameter tuning
- Gradient clipping and normalization
- Learning rate scheduling

Hyperparameter Guidelines:

Learning Rate:
- Typically 1e-5 to 5e-5 for language models
- Lower than supervised learning
- May need learning rate decay

Clipping Parameter (ε):
- Standard value: 0.2
- Lower values (0.1) for more conservative updates
- Higher values (0.3) for faster learning

KL Penalty (β):
- Start with 0.1-0.2
- Adaptive adjustment based on KL divergence
- Higher values for more conservative training

Batch Size:
- Larger batches (64-256) for stability
- Limited by memory constraints
- May use gradient accumulation
Code Example
# Comprehensive PPO implementation for RLHF
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
from transformers import AutoTokenizer, AutoModelForCausalLM
import numpy as np
from typing import Dict, List, Tuple, Optional
from dataclasses import dataclass
import wandb

@dataclass
class PPOConfig:
    """Configuration for PPO training."""
    model_name: str = "gpt2"
    learning_rate: float = 1.41e-5
    batch_size: int = 64
    mini_batch_size: int = 16
    gradient_accumulation_steps: int = 1
    ppo_epochs: int = 4
    max_grad_norm: float = 1.0
    clip_range: float = 0.2
    clip_range_vf: Optional[float] = None
    vf_coef: float = 0.1
    target_kl: float = 0.1
    init_kl_coef: float = 0.2
    adap_kl_ctrl: bool = True
    gamma: float = 1.0
    lam: float = 0.95
    use_score_scaling: bool = False
    use_score_norm: bool = False
    score_clip: Optional[float] = None

class PPOTrainer:
    def __init__(self, 
                 config: PPOConfig,
                 model: nn.Module,
                 ref_model: nn.Module,
                 reward_model: nn.Module,
                 tokenizer):
        
        self.config = config
        self.model = model  # Policy model
        self.ref_model = ref_model  # Reference model (frozen)
        self.reward_model = reward_model
        self.tokenizer = tokenizer
        
        # Freeze reference model
        for param in self.ref_model.parameters():
            param.requires_grad = False
        
        # Setup optimizer
        self.optimizer = AdamW(
            self.model.parameters(),
            lr=config.learning_rate,
            eps=1e-8,
            weight_decay=0.01
        )
        
        # KL controller for adaptive penalty
        self.kl_ctl = AdaptiveKLController(config.init_kl_coef, config.target_kl)
        
        # Training statistics
        self.stats = {
            'policy_loss': [],
            'value_loss': [],
            'total_loss': [],
            'kl_divergence': [],
            'rewards': [],
            'advantages': [],
            'approx_kl': [],
        }
    
    def generate_responses(self, 
                          prompts: List[str],
                          max_new_tokens: int = 50,
                          temperature: float = 0.7,
                          top_p: float = 0.9) -> Tuple[List[str], torch.Tensor, torch.Tensor]:
        """Generate responses from current policy."""
        
        self.model.eval()
        
        all_responses = []
        all_response_tensors = []
        all_log_probs = []
        
        for prompt in prompts:
            # Tokenize prompt
            prompt_tokens = self.tokenizer.encode(prompt, return_tensors="pt")
            prompt_tokens = prompt_tokens.to(self.model.device)
            
            # Generate response
            with torch.no_grad():
                response_tokens = self.model.generate(
                    prompt_tokens,
                    max_new_tokens=max_new_tokens,
                    do_sample=True,
                    temperature=temperature,
                    top_p=top_p,
                    pad_token_id=self.tokenizer.eos_token_id,
                    return_dict_in_generate=True,
                    output_scores=True
                )
            
            # Extract generated tokens (without prompt)
            generated_tokens = response_tokens.sequences[0][prompt_tokens.shape[1]:]
            
            # Calculate log probabilities
            log_probs = []
            for i, token_id in enumerate(generated_tokens):
                if i < len(response_tokens.scores):
                    scores = response_tokens.scores[i][0]  # [vocab_size]
                    log_prob = F.log_softmax(scores, dim=-1)[token_id].item()
                    log_probs.append(log_prob)
            
            # Decode response
            response_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
            
            all_responses.append(response_text)
            all_response_tensors.append(generated_tokens)
            all_log_probs.append(torch.tensor(log_probs))
        
        return all_responses, all_response_tensors, all_log_probs
    
    def compute_rewards(self, prompts: List[str], responses: List[str]) -> List[float]:
        """Compute rewards using reward model."""
        
        self.reward_model.eval()
        rewards = []
        
        for prompt, response in zip(prompts, responses):
            # Create full text
            full_text = f"{prompt}\n\n{response}"
            
            # Tokenize and get reward
            inputs = self.tokenizer(
                full_text,
                return_tensors="pt",
                truncation=True,
                max_length=512
            )
            inputs = {k: v.to(self.reward_model.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                reward = self.reward_model(**inputs).logits[0, 0].item()
            
            rewards.append(reward)
        
        return rewards
    
    def compute_advantages(self, 
                          rewards: torch.Tensor,
                          values: torch.Tensor,
                          masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute GAE (Generalized Advantage Estimation) advantages."""
        
        # Add terminal value of 0
        values = torch.cat([values, torch.zeros(1).to(values.device)])
        
        advantages = torch.zeros_like(rewards)
        last_gae_lam = 0
        
        # Compute advantages using GAE
        for t in reversed(range(len(rewards))):
            if t == len(rewards) - 1:
                next_non_terminal = 0
                next_values = 0
            else:
                next_non_terminal = masks[t + 1]
                next_values = values[t + 1]
            
            delta = rewards[t] + self.config.gamma * next_values * next_non_terminal - values[t]
            advantages[t] = last_gae_lam = delta + self.config.gamma * self.config.lam * next_non_terminal * last_gae_lam
        
        # Compute returns
        returns = advantages + values[:-1]
        
        return advantages, returns
    
    def compute_policy_loss(self,
                           log_probs: torch.Tensor,
                           old_log_probs: torch.Tensor,
                           advantages: torch.Tensor,
                           masks: torch.Tensor) -> torch.Tensor:
        """Compute clipped PPO policy loss."""
        
        # Compute probability ratio
        log_ratio = log_probs - old_log_probs
        ratio = torch.exp(log_ratio)
        
        # Compute clipped surrogate loss
        surr1 = ratio * advantages
        surr2 = torch.clamp(ratio, 1 - self.config.clip_range, 1 + self.config.clip_range) * advantages
        
        policy_loss = -torch.min(surr1, surr2)
        
        # Apply mask and average
        policy_loss = (policy_loss * masks).sum() / masks.sum()
        
        return policy_loss
    
    def compute_value_loss(self,
                          values: torch.Tensor,
                          old_values: torch.Tensor,
                          returns: torch.Tensor,
                          masks: torch.Tensor) -> torch.Tensor:
        """Compute value function loss."""
        
        if self.config.clip_range_vf is not None:
            # Clipped value loss
            values_clipped = old_values + torch.clamp(
                values - old_values,
                -self.config.clip_range_vf,
                self.config.clip_range_vf
            )
            
            vf_loss1 = (values - returns) ** 2
            vf_loss2 = (values_clipped - returns) ** 2
            vf_loss = torch.max(vf_loss1, vf_loss2)
        else:
            # Standard MSE loss
            vf_loss = (values - returns) ** 2
        
        # Apply mask and average
        vf_loss = (vf_loss * masks).sum() / masks.sum()
        
        return vf_loss
    
    def compute_kl_penalty(self,
                          log_probs: torch.Tensor,
                          ref_log_probs: torch.Tensor,
                          masks: torch.Tensor) -> torch.Tensor:
        """Compute KL divergence penalty."""
        
        kl_div = ref_log_probs - log_probs
        kl_penalty = (kl_div * masks).sum() / masks.sum()
        
        return kl_penalty
    
    def train_step(self, batch_data: Dict) -> Dict:
        """Perform one PPO training step."""
        
        self.model.train()
        
        # Extract batch data
        prompts = batch_data['prompts']
        responses = batch_data['responses']
        old_log_probs = batch_data['log_probs']
        rewards = batch_data['rewards']
        
        # Convert to tensors
        rewards = torch.tensor(rewards, dtype=torch.float32, device=self.model.device)
        
        # Generate current policy outputs
        current_responses, response_tensors, current_log_probs = self.generate_responses(prompts)
        
        # Compute values (simplified - in practice, use separate value head)
        values = torch.zeros_like(rewards)  # Placeholder
        
        # Compute advantages
        masks = torch.ones_like(rewards)  # Simplified masking
        advantages, returns = self.compute_advantages(rewards, values, masks)
        
        # Normalize advantages
        advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
        
        # PPO training loop
        total_policy_loss = 0
        total_value_loss = 0
        total_kl_penalty = 0
        
        for ppo_epoch in range(self.config.ppo_epochs):
            # Get current log probs (simplified)
            curr_log_probs = torch.stack([lp.mean() for lp in current_log_probs])
            old_lp = torch.stack([lp.mean() for lp in old_log_probs])
            
            # Compute losses
            policy_loss = self.compute_policy_loss(curr_log_probs, old_lp, advantages, masks)
            value_loss = self.compute_value_loss(values, values, returns, masks)  # Simplified
            
            # Get reference model log probs
            ref_log_probs = self.get_ref_log_probs(prompts, responses)
            kl_penalty = self.compute_kl_penalty(curr_log_probs, ref_log_probs, masks)
            
            # Total loss
            total_loss = (
                policy_loss +
                self.config.vf_coef * value_loss +
                self.kl_ctl.value * kl_penalty
            )
            
            # Backward pass
            self.optimizer.zero_grad()
            total_loss.backward()
            
            # Gradient clipping
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)
            
            self.optimizer.step()
            
            # Accumulate losses
            total_policy_loss += policy_loss.item()
            total_value_loss += value_loss.item()
            total_kl_penalty += kl_penalty.item()
        
        # Update KL controller
        mean_kl = total_kl_penalty / self.config.ppo_epochs
        self.kl_ctl.update(mean_kl, batch_data['batch_size'])
        
        # Record statistics
        stats = {
            'policy_loss': total_policy_loss / self.config.ppo_epochs,
            'value_loss': total_value_loss / self.config.ppo_epochs,
            'kl_penalty': mean_kl,
            'kl_coef': self.kl_ctl.value,
            'mean_reward': rewards.mean().item(),
            'mean_advantage': advantages.mean().item(),
        }
        
        return stats
    
    def get_ref_log_probs(self, prompts: List[str], responses: List[str]) -> torch.Tensor:
        """Get log probabilities from reference model."""
        
        self.ref_model.eval()
        ref_log_probs = []
        
        with torch.no_grad():
            for prompt, response in zip(prompts, responses):
                # Simplified calculation
                ref_log_prob = torch.tensor(0.0)  # Placeholder
                ref_log_probs.append(ref_log_prob)
        
        return torch.stack(ref_log_probs)
    
    def train(self, prompts: List[str], num_steps: int = 1000):
        """Main training loop."""
        
        print(f"Starting PPO training for {num_steps} steps...")
        
        for step in range(num_steps):
            # Sample batch of prompts
            batch_prompts = np.random.choice(prompts, size=self.config.batch_size, replace=True).tolist()
            
            # Generate responses
            responses, response_tensors, log_probs = self.generate_responses(batch_prompts)
            
            # Compute rewards
            rewards = self.compute_rewards(batch_prompts, responses)
            
            # Prepare batch data
            batch_data = {
                'prompts': batch_prompts,
                'responses': responses,
                'log_probs': log_probs,
                'rewards': rewards,
                'batch_size': len(batch_prompts)
            }
            
            # Training step
            stats = self.train_step(batch_data)
            
            # Log statistics
            if step % 10 == 0:
                print(f"Step {step}:")
                for key, value in stats.items():
                    print(f"  {key}: {value:.4f}")
                print()
            
            # Record stats
            for key, value in stats.items():
                if key in self.stats:
                    self.stats[key].append(value)
        
        print("PPO training completed!")

class AdaptiveKLController:
    """Adaptive KL divergence controller."""
    
    def __init__(self, init_kl_coef: float, target_kl: float):
        self.value = init_kl_coef
        self.target = target_kl
    
    def update(self, current_kl: float, n_steps: int):
        """Update KL coefficient based on current KL divergence."""
        
        if current_kl < self.target / 1.5:
            # KL too low, decrease penalty
            self.value *= 0.98
        elif current_kl > self.target * 1.5:
            # KL too high, increase penalty
            self.value *= 1.02
        
        # Clamp to reasonable range
        self.value = max(0.01, min(2.0, self.value))

# Example usage
if __name__ == "__main__":
    # Initialize models
    model_name = "microsoft/DialoGPT-small"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Policy model (trainable)
    policy_model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Reference model (frozen copy)
    ref_model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Reward model (placeholder - use actual trained reward model)
    reward_model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # PPO configuration
    config = PPOConfig(
        model_name=model_name,
        learning_rate=1.41e-5,
        batch_size=8,  # Small for demo
        mini_batch_size=4,
        ppo_epochs=2,
        target_kl=0.1,
    )
    
    # Initialize PPO trainer
    ppo_trainer = PPOTrainer(
        config=config,
        model=policy_model,
        ref_model=ref_model,
        reward_model=reward_model,
        tokenizer=tokenizer
    )
    
    # Sample prompts for training
    prompts = [
        "Human: What's the best way to learn programming?\n\nAssistant:",
        "Human: Explain climate change in simple terms.\n\nAssistant:",
        "Human: How do I make a good first impression?\n\nAssistant:",
        "Human: What are the benefits of exercise?\n\nAssistant:",
    ]
    
    # Train with PPO
    ppo_trainer.train(prompts, num_steps=50)  # Short training for demo
    
    # Save trained model
    policy_model.save_pretrained("./ppo_trained_model")
    tokenizer.save_pretrained("./ppo_trained_model")
    
    print("PPO training completed and model saved!")

On this page

Understanding RLHFReward Model DesignPPO Implementation